pyspark.sql.DataFrameReader.json#

DataFrameReader.json(path, schema=None, primitivesAsString=None, prefersDecimal=None, allowComments=None, allowUnquotedFieldNames=None, allowSingleQuotes=None, allowNumericLeadingZero=None, allowBackslashEscapingAnyCharacter=None, mode=None, columnNameOfCorruptRecord=None, dateFormat=None, timestampFormat=None, multiLine=None, allowUnquotedControlChars=None, lineSep=None, samplingRatio=None, dropFieldIfAllNull=None, encoding=None, locale=None, pathGlobFilter=None, recursiveFileLookup=None, modifiedBefore=None, modifiedAfter=None, allowNonNumericNumbers=None)[source]#

Loads JSON files and returns the results as a DataFrame.

JSON Lines (newline-delimited JSON) is supported by default. For JSON (one record per file), set the multiLine parameter to true.

If the schema parameter is not specified, this function goes through the input once to determine the input schema.

New in version 1.4.0.

Changed in version 3.4.0: Supports Spark Connect.

Parameters
pathstr, list or RDD

string represents path to the JSON dataset, or a list of paths, or RDD of Strings storing JSON objects.

schemapyspark.sql.types.StructType or str, optional

an optional pyspark.sql.types.StructType for the input schema or a DDL-formatted string (For example col0 INT, col1 DOUBLE).

Other Parameters
Extra options

For the extra options, refer to Data Source Option for the version you use.

Examples

Example 1: Write a DataFrame into a JSON file and read it back.

>>> import tempfile
>>> with tempfile.TemporaryDirectory(prefix="json1") as d:
...     # Write a DataFrame into a JSON file
...     spark.createDataFrame(
...         [{"age": 100, "name": "Hyukjin"}]
...     ).write.mode("overwrite").format("json").save(d)
...
...     # Read the JSON file as a DataFrame.
...     spark.read.json(d).show()
+---+-------+
|age|   name|
+---+-------+
|100|Hyukjin|
+---+-------+

Example 2: Read JSON from multiple files in a directory

>>> from tempfile import TemporaryDirectory
>>> with TemporaryDirectory(prefix="json2") as d1, TemporaryDirectory(prefix="json3") as d2:
...     # Write a DataFrame into a JSON file
...     spark.createDataFrame(
...         [{"age": 30, "name": "Bob"}]
...     ).write.mode("overwrite").format("json").save(d1)
...
...     # Read the JSON files as a DataFrame.
...     spark.createDataFrame(
...         [{"age": 25, "name": "Alice"}]
...     ).write.mode("overwrite").format("json").save(d2)
...     spark.read.json([d1, d2]).show()
+---+-----+
|age| name|
+---+-----+
| 25|Alice|
| 30|  Bob|
+---+-----+

Example 3: Read JSON with a custom schema

>>> import tempfile
>>> with tempfile.TemporaryDirectory(prefix="json4") as d:
...     # Write a DataFrame into a JSON file
...     spark.createDataFrame(
...        [{"age": 30, "name": "Bob"}]
...     ).write.mode("overwrite").format("json").save(d)
...     custom_schema = "name STRING, age INT"
...     spark.read.json(d, schema=custom_schema).show()
+----+---+
|name|age|
+----+---+
| Bob| 30|
+----+---+